Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development
نویسندگان
چکیده
Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data.
منابع مشابه
TASIC: determining branching models from time series single cell data
Motivation Single cell RNA-Seq analysis holds great promise for elucidating the networks and pathways controlling cellular differentiation and disease. However, the analysis of time series single cell RNA-Seq data raises several new computational challenges. Cells at each time point are often sampled from a mixture of cell types, each of which may be a progenitor of one, or several, specific fa...
متن کاملQuantitative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation
Epithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which hav...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملPrognostic Significance of MMP2 and MMP9 Functional Promoter Single Nucleotide Polymorphisms in Head and Neck Squamous Cell Carcinoma
Objective(s) Matrix metalloproteinases comprise a family of enzyme that is able to degrade components of extra cellular matrix. There are single nucleotide polymorphisms in the promoter regions of several genes with ability to influence cancer susceptibility. The aim of this study was to analyses association between MMP2 and MMP9 promoter polymorphisms and head and neck squamous cell carcinoma...
متن کاملCell-Based Multi-Parametric Model of Cleft Progression during Submandibular Salivary Gland Branching Morphogenesis
Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix) adhesion, and cellular contraction in cleft forma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016